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Abstract

In this paper, we are concerned with the second-order, self-adjoint
dynamic equation [p(t)z®(H)]Y + q(t)z(t) = 0 on a time scale. Little
work has been done on this equation, which combines both the delta and
nabla derivatives. Here, we establish some preliminary results, including
an analogue of the Lagrange Identity. We then explore zeros of solutions
and disconjugacy.

1 Preliminary Results

This paper is concerned with the study of the second-order self-adjoint
equation [p(t)z?]Y + ¢(t)z = 0 on a time scale. It is assumed that the
reader is already familiar with the basic notions of calculus on a time
scale. A complete introduction to the subject can be found in [2].

Throughout, we assume that T is a time scale. The notation [a, ] is un-
derstood to mean the real interval [a, b] intersected with T.

In this paper, we retain the original definition of the “backward graininess
function”, v(t). We define

v(t) =t — p(t).

This definition is consistent with the original literature published on V-
derivatives. It is inconsistent, however with the current work on -
derivatives. When working with a-derivatives, the o-graininess, po is
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defined to be po := «(t) - t. When a(t) = p(t), then, we would have
o = p(t) —t = —v(t). This inconsistency is unfortunate, but we feel it is
more important that we remain consistent with the way v(t) was defined
in previously published work. To minimize confusion, we recommend the
notation p,{t) = p(t) — t be used in work that is to be interpreted in the
more general a-derivative setting.

We are interested in the second-order self-adjoint dynamic equation
Lz = 0 where Lz = [p(t)z*]" + q(t)z. (1)
Here we assume that p is continuous, ¢ is ld-continuous and that
p(t) >0forallteT.

Define the set D to be the set of all functions £ : T — R such that
z® : T — R is continuous and such that [p(t)z®]Y : T% — R is Id-
continuous. A function z € D is said to be a solution of Lz = 0 on T
provided Lz(t) = 0 for all ¢ € Tx.

Since the equation we are interested in, equation (1), contains both A and
V derivatives, we establish here some results regarding the relationship
between these two types of derivatives on time scales.

One of the following results relies on L’Hdpital’s rule. A version of
L’Hépital’s rule involving A derivatives is contained in [2]. We state its
analog for V derivatives here.

For any right dense tp € T and any & > 0, define

R.(to):={teT:0<t—1tg <e}

and let T := TU {sup T} U {inf T}.
Theorem 1 (L’Hépital’s Rule). Assume f and g are V differentiable
on T with

lim f(t) = lim g(t) =0 for some right-dense to € T
totd totd

Purthermore, suppose there exists € > 0 such that both g(t) and g (t) are
either strictly positive or strictly negative for all t € R.(to) and have the
same sign on Re(to). Then

@)

v v
lim inf fv () < liminf —'f—(t—) < limsup —+* < limsup fv () .
t—»tﬁ g (t) t—viﬁ' g(t) t—‘tg' g(t) t-—»tg' g (t)

The proof of this theorem is mearly identical to the proof of the A-
derivative analog established in [2}, and we will not include it here.

In order to determine when the two types of derivatives may be inter-
changed, we need to consider some of the points in our time scale sepa-
rately, so let

A= {t € T | t is left-dense and right-scattered}, Ta: =T\ A




Additionally, let
B:={t€T |tisright-dense and left-scattered}, Tp:=T\ B.

Lemma 2. Ift € Ta then o(p(t)) =t. Ift € Tp then p(o(t)) =1t.

Theorem 8. If f : T — R is A-differentiable on T" and f* is rd-
continuous on T™ then f is V-differentiable on Ty, and

2 e) teTa
MO { hm::i_ f2(s) teA

Ifg: T — R is V-differentiable on T, and gV is ld-continuous on T then
g is A-differentiable on T, and

_ V(o(t) teT
g° () = { ﬁms_,ﬁ. gv(s) te BI.3

We will only prove the first statement. The proof of the second statement
is similar.
Proof. First, assume t € Ta. Then there are two cases: Either

(i) tis left-scattered, or

(ii) ¢ is both left-dense and right-dense.
Case (i): Suppose ¢t is left-scattered and f is A-differentiable on T*. Then
p(t) is right-scattered, and

a(p(t))) — i
o(p(t)) — p(t)

Now, as f is A-differentiable on T, f is continuous on T. Then, since ¢
is left-scattered, f is V-differentiable at £, and we see that

A _ flalp@)) — fle(t)
f o) o(pft)) = p(®
f(&) = fpt)
t—p(t)
= 7).
Case (ii): Now, suppose t is both left-dense and right-dense, and f : T — R

is continuous on T and A-differentiable at ¢. Since ¢t is right-dense and f
is A-differentiable at ¢, we have that

(t) (6)

i ————t

s—t

exists. But t is left-dense as well, so this expression also defines fY (t),
and we see that

fV (t) — B—)t f(tl — i(‘s)
= 2@
= f2(e()).
3



So, we have established the desired result in the case where t € Ta.

Now suppose ¢t € A. Then t is left-dense. Hence fY (¢) exists provided
o £O = 1)
s—t t—s

exists.
As t is right-scattered, we need only consider the limit as s — £ from the
left. Then we apply L’Hopital’s rule {2}, differentiating with respect to s

to get

lim FAURFIO] ) fs) _ = lim f ( ) - hm 2(s).

s5—i— -8 s—»i—
Since we have assumed that f2 is rd-continuous, this limit exists. Hence
f is V-differentiable, and fV(t) = lim,—.¢— f*(2), as desired. O

Corollary 4. Ifto € T, and f : T — R is rd-continuous on T then
Ji, f(r)AT is V-differentiable on T and

v .
t _J flo(®) fteT
[ f(T)AT] - linl:s_,t_ f(s) teA *

Ifto € T, and g : T — R is ld-continuous on T then [; g(r)Vr is A-
differentiable on T and

I g(ﬂvT] (e ) dres

2 Lagrange Identity and Corollaries

In this section, we will establish the Lagrange Identity for the dymnamic
equation (1), and explore some corollaries and related results. Theorem
5, and Corollary 9 were previously established in Atici and Guseinov’s
work [1]. Our conditions on p and g are less restrictive than Atici and
Guseinov’s, and our domain of interest, D, is defined more broadly. In
spite of this, however, many of the proofs contained in {1] remain valid.
As this is the case, we have omitted the proofs of some of the following
theorems, and refer the reader to Atici and Guseinov’s work.

Theorem 5. Ifty € T, and 2o and =, are given constants, then the initial
value problem
Lz =0, z(to) = =, 8 (to) =z

has a unique solution, and this solution exists on all of T. [1]

Definition 6. If z,y are A-differentiable on T", then the Wronskian of
z and y, denoted W(z,y)(t) is defined by

z(t)  y(®)

W(z,y) (t) = pray (t) yA (t)

for t € T".




Definition 7. Ifz,y are A-differentiable on T", then the Lagrange bracket
of ¢ and y is defined by
{z;9}(t) = p(t)W(z,9)(t) forteT".
Theorem 8 (Lagrange Identity). If z,y € D, then
z(t)Ly(t) — y(t) Lz(t) = {z;3}° (t) fort e Tr.
Proof. Let z,y € D. We have
{zy}’ = PW(zy)”
= [opy® —ypz®)”
= o p’y™ +afpy®]” — y PP’ —ylpz”]”
= 2y + z[pyA]V —yVpPzY — y[pzA]V
= zlpy”]" - ylp®]"
= z(py®]" + ) — y(lpz®]" + gz)
= zly—ylLz,
where we have made use of the fact that z® and y® are continuous and

applied Theorem 3. 0

Corollary 9 (Abel’s Formula). If z,y are solutions of (1) then
C
W(z,y)(t) = — forteT",
@00 = o5 1
where C is a constant. [1]

Definition 10. Define the inner product of z and y on [a,b] by

b
@) = [ 0w
Corollary 11 (Green’s Formula). If z,y € D then

(@, Ly) — (Lz,y) = [p(OW (z,9)]a.

Theorem 12 (Converse of Abel’s Formula). Assume u is a solution
of (1) with u(t) #0 for t € T. If v € D satisfies
C
W(u,v)({t) = —,
(o)) = o7

then v is also a solution of (1).

Proof. Suppose that u is a solution of (1) with u(t) # 0 for any ¢, and
assume that v € D satisfies W (u, v)(t) = p—ﬁ;. Then by Theorem 8, we
have

u(t)Lo(t) — v(@)Lut) = {wv}Y ()
u()Lo(t) = [pOW(w,0)@)]"
- Cw
- [P(t) p(t)]
= CV
= 0.




As u(t) # 0 for any ¢, we can divide through by it to get
Ly(t)=0 forteTs.
Hence » is a solution of (1) on T. O

Theorem 13 (Reduction of Order). Let to € T®, and assume u s a
solution of (1) with u(t) # 0 for any t. Then a second, linearly indepen-
dent solution, v, of (1) is given by

1

vit) =uld) | p_(s)u(s)uv_(s)
forteT.

Proof By Theorem 12, we need only show that v € D and that W (u, v)(t) =
'17(}7 for some constant C. Consider first

Wu,v)(t) = u(t)v®@)—ov()u’(t)
. 1 v
= (t)[ @], p(s)u(s)uv(s)““”p(t)u(t)ua(t)]
1
—r (t)u(t) o p————(s)u(s)u"(s)
i 1 RT0N0
= et p(s)u(s)uv(e»)“ t D
1
R A eraron
_ 1
Top(e)’

Here we have C = 1. It remains to show that » € D. We have that

Ay — 1 u (1)
® = 0/ p(s)u(s)uﬂ(s) 8ot P u
) ; :

0 P @ sDu

Since u € D, u(t) # 0 and p is continuous, we have that v® is continuous.
Next, consider

A o —-———————-1 Y ! Y
@)Y = [P(t)" ® 1o P(s)u(s)u” (s) ] +[5(_5]
= WO [ e
oyt 1 0N
+p°(t) (t) [ p(s)u(s)us(s) ] u(t)ur(t)




Now, the first and last terms are ld-continuous. It is not as clear that the
center term is ld-continuous. Specifically, we are concerned about whether

or not the expression
t 1 ] v
————As
[/m p(s)u(s)u” (s)

is 1d-continuous. Note that the integrand is rd-continuous. Hence Corol-
lary 4 applies and yields

V .
[/t————l——m] _ | wowwers, ifteTa
to p(T)u(r)us () Hmg—ss—- FOMOILO) te A.

Simplification of this expression gives

[ mimem®] = powamm et

This function is 1d-continuous, and so we have that v € D. Hence by
Theorem 12, v is also a solution of (1). Finally, note that as W (u,v)(t) =
;(1;7 # 0 for any ¢, u and v are linearly independent. ]

3 Oscillation and Disconjugacy

In this section, we establish results concerning generalized zeros of solu-
tions of (1), and examine disconjugacy and oscillation of solutions.

Definition 14. We say that a solution, z, of (1) has a generalized zero
attif
z(t) =0

or, if t is left-scattered and
- 2(p(t)z(®) < 0.

Definition 15. We say that (1) is disconjugate on an interval [a,b] if
the following hold.

(i) If = is a nontrivial solution of (1) with z(a) = 0, then = has no
generalized zeros in (a,b].

(%) If = is a nontrivial solution of (1) with z(a) # 0, then = has at most
one generalized zero in (a,b].

Definition 16. Let w = supT, and if w < oo, assume p(w) = w. Let
a € T. We say that (1) is oscillatory on [a,w) if every nontrivial real-
valued solution has infinitely many generalized zeros in [a,w). We say (1)
is nonoscillatory if it 4s not oscillatory.

The following Lemma is a direct consequence of the definition of nonoscil-
latory.

Lemma 17. Letw =supT. Ifw < oo, then assume p(w) =w. Leta € T.
Then if (1) is nonoscillatory on |a,w), there is some to €T, to > a, such
that (1) has a positive solution on [to,w).




Theorem 18 (Sturm Separation Theorem). Let u and v be linearly
independent solution of (1). Then u and v have no common zeros in T*.
If u has a zero at t; € T, and a generalized zero at ty > t; € T, then v
has a generalized zero in (t1,t2). If u has generalized zeros at t, € T and
to >ty € T, then v has a generalized zero in [t1,12).

The proof of this theorem is directly analogous to the standard proof used
in the differential equations case.

Theorem 19. If (1) has a positive solution on an interval T C T then
(1) is disconjugate on T. Conversely, if a,b € Tx and (1) is disconjugate
on [p(a),o(b)] C T, then (1) has a positive solution on [p(a),o(b)].

Proof. If (1) has a positive solution, » on Z C T, then disconjugacy fol-
lows from the Sturm Separation Theorem.

Conversely, if (1) is disconjugate on the compact interval [p(a), o (b)], then
let u,v be the solutions of (1) satisfying u(p(a)) = 0,2 (p(e)) = 1 and
v(a (b)) = 0,v>(b) = —1. Since (1) is disconjugate on [p(a), o(b)], we have
that u(t) > 0 on (p(a),o(b)], and v(t) > 0 on [p(a),a(b)). Then

z(t) = u(t) + v(t)
is the desired positive solution. 0

Theorem 20 (Polya Factorization). If (1) has a positive solution, u,
on an interval T C T, then for any «© € D, we get the Polya Factorization

Lz = o (){e2]oaz]* YV () fort e Z,

where 1
ap=—>0 onlZ,
u

and
oz :=puu’ >0 onl.

Proof. Assume that u is a positive solution of (1) on Z, and let = € D.
Then by the Lagrange Identity (Theorem 8),

{wz}" (¢)

u(t)Lz(t) — z{t)Lu(t)

e L v
La(t) = L®W@a)}70)
1 +[z14 v
- B} o
= on(t){ezleaz]*}V (@),
for £ € Z, where a1 and 2 are as described in the theorem. O

Theorem 21 (Trench Factorization). Let a € T, and let w :=supT.
If w < oo, assume p(w) = w. If (1) is nonoscillatory on [a,w), then there
is to € T such that for any = € D, we get the Trench Factorization

Lz(t) = Au(){Bepr2)* 7 ()




for t € [to,w), where B1, P2 >0 on [te,w), and

mmm“_

Proof. Since (1) is nonoscillatory on [a,w), (1) has a positive solution,
u on [to,w) for some ty € T. Then by Theorem 20, Lz has a Polya
factorization on [tp,w). Thus there are functions o; and o2 such that

La(t) = en (t){ezfeaz]®}Y (&) for ¢ € [to,w),

defined as described in the preceding theorem. Now, if

il |
———At = 00,
/:u a(t)

then take f1(t) = a1 (t), and Ba(t) = (t), and we are done. Therefore,

assume that
e AL < 00,
.[w o (b)
In this case, let

Bi(t) = f m(t) andﬂg(t)—az(t)fdaz(s) f:)a()
t ckz(ﬂ) 1) 2\

for t € [to,w). Note that as a1, a2 > 0, we have 81,52 > 0 as well. Also,

fl

b
1
——At linx / = At
to Ba(t) by bET to az(t)ft a2(s)As a(t) uzl(s)A

1
= lim / | At
b beT J, [ft —-QZI(S)AS]

. 1
b—»]wu.lge'r [f;" n_;»l(ZTAS]
= oo0.

Now let z € D. Then
Wﬂ%wz[QMb@]A J;MWA*“@AWA+M®A0MM

ft‘" ;;iT)As — A

for t € [to,w). So we get

fi £|t2(-9) U(t) ul2(5)

B O Oel* = a2 [ s+ en)a(t)

for t € [to,w). Taking the V -derivative of both sides gives

{ﬂz(’ﬁ)[ﬂl(t)ﬂc(t)]"}V = {az(t)[al(t)m(t)]A}v [’ El(sim

+ {az(t)[al(t)”(t)]A}p [[” 521(_3)AS]V

+en (B)=()]”




for t € [to,w). We now claim that the last two terms in this expression
cancel. To see this, put the expression back in terms of our positive
solution u, and consider ¢t € A and t € T4 separately. Careful application
of Theorem 3 then shows that these terms do, in fact cancel, and we get

{(BOBeer} ={aolmo0r} [ e
It then follows that

60 {B0B O} = {e@lm@:01*} = Latt),
for t € [fo,w) and the proof is complete. m}

Theorem 22 (Recessive and Dominant Solutions). Leta € T, and
letw:=supT. Ifw < oo the we assume p(w) = w. If (1) is nonoscillatory
on o, w), then there is a solution, u, called a recessive solution at w, such
that u is positive on [to,w) for some to € T, and if v is any second, linearly
independent solution, called a dominant solution at w, the following hold.

(i) Yo 32 =0

(i) Ly somamem At = 0
(i6) fy swmeem At < 0o for b < w, sufficiently close, and

(iv) ’"(tz)’(’f; ® p('yzf)(t) for t < w, sufficiently close.

T'he recessive solution, u, is unique, up to multiplication by a nonzero
constant.

The proof of this theorem is directly analogous to the standard proof used
in the differential equations case.
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